37 research outputs found

    Zeolite synthesis from low-cost materials and environmental applications: A review

    Full text link
    Zeolites with the three-dimensional structures occur naturally or can be synthesized in the laboratory. Zeolites have versatile applications such as environmental remediation, catalytic activity, biotechnological application, gas sensing and medicinal applications. Although, naturally occurring zeolites are readily available, nowadays, more emphasis is given on the synthesis of the zeolites due to their easy synthesis in the pure form, better ion exchange capabilities and uniform in size. Recently, much attention has also been paid on how zeolite is being synthesized from low-cost material (e.g., rice husk), particularly, by resolving the major environmental issues. Hence, the main purpose of this review is to make an effective resolution of zeolite synthesis methods together with potential applications in environmental engineering. Among different synthesis methods, hydrothermal method is commonly found to be used widely in the synthesis of various zeolites from inexpensive raw materials such as fly ash, rice husk ash, blast furnace slag, municipal solid waste, paper sludge, lithium slag and kaolin. Besides, future expectation in the field of synthetic zeolites research is also included

    Ultrafiltration of whey: membrane performance and modelling using a combined pore blocking-cake formation model

    Full text link
    [EN] BACKGROUNDUltrafiltration has been considered as a green' technique to treat different industrial wastewaters, such as whey in the dairy industry. However, fouling is one of the major drawbacks in the industrial implementation of this process. Thus, in this work, the performance of ultrafiltration membranes was investigated in terms of permeate flux and protein rejection when treating different whey model solutions. Modelling of permeate flux was performed combining two main fouling mechanisms (complete pore blocking and cake formation) by a time-dependent pore blocking parameter. RESULTSResults demonstrated that high protein concentration and the presence of calcium salts in the feed solution favoured permeate flux decline. The combined model was appropriate to describe the main fouling mechanisms, with fitting accuracies higher than 0.960. Model parameters were correlated with both calcium and protein concentration and the developed model was successfully validated with an additional fouling test. CONCLUSIONAll the membranes tested were suitable for carrying out whey protein separation, with rejection indexes greater than 99%. The combined model and the statistical correlation of model parameters with calcium and protein concentrations were useful to predict permeate flux decline when the ultrafiltration of a new whey model solution was performed. (c) 2017 Society of Chemical IndustryThis work was supported by the Spanish Ministry of Science and Innovation (project CTM2010-20186).Corbatón Báguena, MJ.; Alvarez Blanco, S.; Vincent Vela, MC. (2018). Ultrafiltration of whey: membrane performance and modelling using a combined pore blocking-cake formation model. Journal of Chemical Technology & Biotechnology. 93(7):1891-1900. https://doi.org/10.1002/jctb.5446]S1891190093

    Meeting Future Energy Needs in the Hindu Kush Himalaya

    Get PDF
    As mentioned in earlier chapters, the HKH regions form the entirety of some countries, a major part of other countries, and a small percentage of yet others. Because of this, when we speak about meeting the energy needs of the HKH region we need to be clear that we are not necessarily talking about the countries that host the HKH, but the clearly delineated mountainous regions that form the HKH within these countries. It then immediately becomes clear that energy provisioning has to be done in a mountain context characterized by low densities of population, low incomes, dispersed populations, grossly underdeveloped markets, low capabilities, and poor economies of scale. In other words, the energy policies and strategies for the HKH region have to be specific to these mountain contexts

    Metals extraction processes from electronic waste: constraints and opportunities.

    Full text link
    The skyrocketing demand and progressive technology have increased our dependency on electrical and electronic devices. However, the life span of these devices has been shortened because of rapid scientific expansions. Hence, massive volumes of electronic waste (e-waste) is generating day by day. Nevertheless, the ongoing management of e-waste has emerged as a major threat to sustainable economic development worldwide. In general, e-waste contains several toxic substances such as metals, plastics, and refractory oxides. Metals, particularly lead, mercury, nickel, cadmium, and copper along with some valuable metals such as rare earth metals, platinum group elements, alkaline and radioactive metal are very common; which can be extracted before disposing of the e-waste for reuse. In addition, many of these metals are hazardous. Therefore, e-waste management is an essential issue. In this study, we critically have reviewed the existing extraction processes and compared among different processes such as physical, biological, supercritical fluid technologies, pyro and hydrometallurgical, and hybrid methods used for metals extraction from e-waste. The review indicates that although each method has particular merits but hybrid methods are eco-friendlier with extraction efficiency > 90%. This study also provides insight into the technical challenges to the practical realization of metals extraction from e-waste sources
    corecore